# Rotary Gripper 

Series MRHQ

## Gripper Inside Diameter／Size：ø10，ø16，ø20，ø25



## Series MRHQ

## Model Selection

Procedure

## Operating conditions

Enumerate the operating condi－ tions according to the mounting position and workpiece config－ uration．


Vertical mounting


Horizontal mounting

Calculation
Example

## Rotation time

Confirm that it is within the adjustable rotation time range．

## －Model used

－Operating pressure
－Mounting position
－Rotation time t（s）
－Overhang H（mm）
－Gripping point distance $L$（ mm ）
－Distance between central axis and center of gravity $\mathbf{h}(\mathrm{mm})$
－Load mass m1（kg）
－Mass of 2 attachments m2（kg）


Rotary gripper：MRHQ16D－90S Pressure： $0.4 \mathbf{M P a}$ Mounting position：Horizontal Rotation time（ t ： $\mathbf{0 . 2} \mathrm{s} / 90^{\circ}$ Overhang（H）： $\mathbf{1 0} \mathbf{~ m m} \quad$ Gripping point distance（L）： $\mathbf{2 0} \mathbf{~ m m}$ Distance between central axis and center of gravity（h）： 10 mm Load mass（m1）： 0.07 kg
Mass of $\mathbf{2}$ attachments（m2）： $0.05 \mathbf{~ k g}$

## Overhang <br> and gripping point distance

Confirm that the overhang $(\mathrm{H})$ and the gripping point distance（ L ）are within the operating pressure range limit．

Gripping point range limit Graph（1）
Within the range limit OK

## Load mass

Confirm that the load converted from the load mass is less than $1 / 20$ of the effective gripping force． （A greater margin must be allowed if large impacts will be applied when work pieces are transported．）

$$
20 \times 9.8 \times \mathrm{m} 1
$$

＜Effective gripping force（N）Graph（2）
$20 \times 9.8 \times 0.07=13.72$
13.72 N ＜Effective gripping force OK

## External force on finger

Make sure that the vertical load and each moment on finger are within allowable value．

Less than allowable value
（Refer to page 721 for the lateral load allowable value and each moment value

Downward vertical load by load and attachment：
$\mathrm{f}=(0.07+2 \times 0.05) \times 9.8=1.67(\mathrm{~N})$＜Vertical allowable value OK

## Rotational torque

（horizontal mounting only）
Convert the weight of the load and attachments（2 pcs．）into a load value and multiply by the overhang（H）．Confirm that this value is less than $1 / 20$ of the effective torque．
Find the moment of inertia，＂IR＂for the load＋attachments（2 pcs．）
$20 \times 9.8 \times(\mathrm{m} 1+\mathrm{m} 2) \times \mathrm{H} / 1000$
< Effective torque $(\mathrm{N} \cdot \mathrm{m})$ Graph (3)

$$
\begin{aligned}
& 20 \times 9.8 \times(0.07+0.05) \times 10 / 1000=0.24 \\
& 0.24 \mathrm{~N} \cdot \mathrm{~m} \text { < Effective torque OK }
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{IR}=\mathrm{K} \times\left(\mathrm{a}^{2}+\mathrm{b}^{2}+12 \mathrm{~h}^{2}\right) \times(\mathrm{m} 1+\mathrm{m} 2) /\left(12 \times 10^{6}\right) \\
& (\mathrm{K}=2: \text { Safety factor })
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{IR} & =2 \times\left(20^{2}+30^{2}+12 \times 10^{2}\right) \times(0.07+0.05) /\left(12 \times 10^{6}\right) \\
& =0.00005 \mathrm{~kg} \cdot \mathrm{~m}^{2}
\end{aligned}
$$

## Kinetic energy

Confirm that the kinetic energy of the load＋attachments（ 2 pcs．）is no more than the allowable value．

[^0]$$
1 / 2 \times \ln \times \omega^{2}<\text { Allowable energy (J) }
$$
$\omega=2 \theta / \mathrm{t}(\omega$ ：Angular speed at the end）
$\theta$ ：Rotation angle（rad）
t：Rotation time（s）

## External gripping



Internal gripping


L：Gripping point distance H：Overhang
－Operate so that the workpiece gripping point distance＂L＂and the amount of overhang＂H＂stay within the range shown for each operating pressure given in the graphs above．
－If operated with the workpiece gripping point outside of the range limit，an excessive eccentric load will be applied to the fingers and guide section，causing play in the fingers and adversely affecting the gripper＇s life．

Gripping Point Range Limit

## External Gripping

MRHQ10


MRHQ16


MRHQ20


MRHQ25


Internal Gripping

## MRHQ10



MRHQ16


MRHQ20


MRHQ25


## Series MRHQ

## Effective Gripping Force

## Expressing the effective gripping force

The effective gripping force shown in the graphs to the right is expressed as F ，which is the impellent force of one finger，when both fingers and attachments are in full contact with the workpiece as shown in the figure below．


## External gripping



Internal gripping


L：Gripping point distance（mm）

## Model Selection Guidelines by Workpiece Mass

[^1]
## Effective Gripping Force

## External Gripping／Double Acting

## MRHQ10D



MRHQ16D


## MRHQ20D



## MRHQ25D



Internal Gripping／Double Acting

## MRHQ10D



MRHQ16D


## MRHQ20D



## MRHQ25D



External Gripping Force／Single Acting

## MRHQ10S



## MRHQ16S



MRHQ20S


## MRHQ25S



Internal Gripping Force／Single Acting

## MRHQ10C



## MRHQ16C



## MRHQ20C



MRHQ25C


MHZ
MHF
MHL
MHR
MHK
MHS
MHC
MHT
MHY
MHW
－$\square$
WRHO
MA
D－

## Series MRHQ

Rotational Torque and Gripping Point

Rotational Torque



How to Mount Attachment on Fingers


When mounting attachments on fingers， support the fingers with a tool such as a spanner to prevent them from twisting． Refer to the table on the right for the tightening torques of finger mounting bolts．

| Model | Bolt | Max．tightening torque N•m |
| :---: | :---: | :---: |
| MRHQ10 | M2．5 $\times 0.45$ | 0.31 |
| MRHQ16 | M3 $\times 0.5$ | 0.59 |
| MRHQ20 | M4 $\times 0.7$ | 1.4 |
| MRHQ25 | M5 $\times 0.8$ | 2.8 |



L：Distance to the point at which a load is applied（mm）

| Model | Allowable vertical load Fv（N） | Maximum allowable moment |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  | Pitch moment $\mathbf{M p}$（N•m） | Yaw moment My（N．m） | Roll moment $\mathbf{M r}$（N．m） |
| MRHQ10 $\square$ | 58 | 0.26 | 0.26 | 0.53 |
| MRHQ16 $\square$ | 98 | 0.68 | 0.68 | 1.36 |
| MRHQ20 $\square$ | 147 | 1.32 | 1.32 | 2.65 |
| MRHQ25 $\square$ | 255 | 1.94 | 1.94 | 3.88 |

Note）Values of load and moment in the above table are static values．

| Calculation for allowable external force（with moment load） | Calculation example |
| :---: | :---: |
| $\text { Allowable load } \mathbf{F}(\mathbf{N})=\frac{\mathbf{M} \text { (Maximum allowable moment) }(\mathbf{N} \cdot \mathrm{m})}{\mathrm{L} \times 10^{-3 *}}$ | When static load $f=10 \mathrm{~N}$ ，which produces pitch moment to the point $\mathrm{L}=30 \mathrm{~mm}$ from MRHQ16D guide，is applied． Operable condition requires that $F$ be bigger than $f$ ． Example： $\begin{aligned} \text { Allowable load } F & =\frac{0.68}{30 \times 10^{-3}} \\ & =22.7(\mathrm{~N})>10 \end{aligned}$ <br> Since load $F>f$ ，it is operable． |

## Series MRHQ

## Moment of Inertia and Allowable Kinetic Energy

## Moment of Inertia Calculation and Allowable Kinetic Energy

Calculate the moment of inertia as shown below，and confirm that the operating conditions are within the allowable kinetic energy shown in the graph＂Moment of inertia and rotation time＂on the right．


When load dimensions＞ attachment dimentions


When load dimensions＜ attachment dimentions

## Description



## Moment of inertia $\mathrm{I}: \mathbf{k g} \cdot \mathrm{m}^{\mathbf{2}}$

$$
\mathrm{I}=\frac{\left(\mathrm{a}^{2}+\mathrm{b}^{2}+12 \mathrm{~h}^{2}\right)(\mathrm{m} 1+\mathrm{m} 2)}{12 \times 10^{6}}
$$

Practical moment of inertia IR： $\mathbf{~ g g} \cdot \mathbf{m}^{\mathbf{2}}$

$$
I R=K x I
$$

＊Use IR for this product．
m1：Mass of two attachments （kg）
m2：Mass of load（kg）
h：Distance between O and G （mm）
$\mathbf{a}, \mathbf{b}$ ：Dimensions of load or attachment（mm）
$\mathbf{K}=2$（Coefficient）

## Graph（Moment of inertia and rotation time）



## How to Use the Graph

## ［Example 1］

－Moment of Inertia： $1 \times 10^{-5} \mathrm{~kg} \cdot \mathrm{~m}^{2}$
－Rotation time： $0.3 \mathrm{~s} / 90^{\circ}$
－To select model MRHQ10

It can be used because the point of intersection $\mathbf{P} 1$ on the graph is within the limiting range．

## ［Example 2］

－Moment of Inertia： $5 \times 10^{-5} \mathrm{~kg} \cdot \mathrm{~m}^{2}$
－Rotation time： $0.1 \mathrm{~s} / 90^{\circ}$
－To select model MRHQ16

It cannot be used because the point of intersection $\mathbf{P}_{2}$ on the graph is outside the range limit．（Review is necessary．）

To confirm by calculation，use formula （1）on the right and check that the kinetic energy of load $E$ is within the allowable values below．

Allowable Kinetic Energy

| Model | Allowable value J |
| :---: | :---: |
| MRHQ10 $\square$ | 0.0046 |
| MRHQ16 $\square$ | 0.014 |
| MRHQ20 $\square$ | 0.034 |
| MRHQ25 $\square$ | 0.074 |

Kinetic energy of load $E: J$
$E=1 / 2 \times \operatorname{IR} \times \omega^{2} \ldots \ldots(1)$
$\omega=2 \theta / \mathrm{t}$
$\omega$ ：Angular speed at the end
$\theta$ ：Rotating angle（rad）
t ：Rotation time（s）

## Rotary Gripper Series MRHQ

## How to Order



## Series MRHQ

Specifications


| Model |  |  | MRHQ10 | MRHQ16 | MRHQ20 | MRHQ25 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Fluid |  |  | Air |  |  |  |
| Operating pressure | Rotary unit |  | 0.25 to 0.7 MPa |  | 0.25 to 1.0 MPa |  |
|  | Gripper unit | Double acting | 0.25 to 0.7 MPa | 0.1 to 0.7 MPa |  |  |
|  |  | Single acting | 0.35 to 0.7 MPa | 0.25 to 0.7 MPa |  |  |
| Rotation angle |  |  | $90^{\circ} \pm 10^{\circ}, 180^{\circ} \pm 10^{\circ}$（Both ends of vibration $\pm 5^{\circ}$ adjustable） |  |  |  |
| Gripper action |  |  | Double acting，Single acting |  |  |  |
| Finger opening／closing repeatability |  |  | $\pm 0.01 \mathrm{~mm}$ |  |  |  |
| Gripper maximum operating frequency |  |  | 180 c．p．m |  |  |  |
| Ambient and fluid temperature |  |  | 5 to $60^{\circ} \mathrm{C}$ |  |  |  |
| Adjustable rotation time range ${ }^{(1)}$ |  |  | 0.07 to $0.3 \mathrm{~s} / 90^{\circ}$（at 0.5 MPa ） |  |  |  |
| Allowable kinetic energy |  |  | 0.0046 J | 0.014 J | 0.034 J | 0.074 J |
| Auto switch | Rotary unit |  | Solid state auto switch（2－wire，3－wire） |  |  |  |
|  | Gripper unit |  | Solid state auto switch（2－wire，3－wire） |  |  |  |

Note 1）Operate within the speed adjustment range，as speed control exceeding the limit value of the low speed may cause sticking or failure to operate．

## Model

| Action | Model | Cylinder bore （mm） | Opening／Closing stroke（mm） | Rotating angle（ ${ }^{\circ}$ ） | $\text { Mass }(\mathrm{g})^{(1)}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Double acting | MRHQ10D | 10 | 4 | 90 | 306 |
|  |  |  |  | 180 | 305 |
|  | MRHQ16D | 16 | 6 | 90 | 593 |
|  |  |  |  | 180 | 591 |
|  | MRHQ20D | 20 | 10 | 90 | 1055 |
|  |  |  |  | 180 | 1052 |
|  | MRHQ25D | 25 | 14 | 90 | 1561 |
|  |  |  |  | 180 | 1555 |
| Single acting | MRHQ10S MRHQ10C | 10 | 4 | 90 | 307 |
|  |  |  |  | 180 | 306 |
|  | MRHQ16S MRHQ16C | 16 | 6 | 90 | 594 |
|  |  |  |  | 180 | 592 |
|  | MRHQ20S MRHQ20C | 20 | 10 | 90 | 1060 |
|  |  |  |  | 180 | 1057 |
|  | MRHQ25S MRHQ25C | 25 | 14 | 90 | 1566 |
|  |  |  |  | 180 | 1560 |

Note 1）Values do not include auto switch mass．

## Gripper Rotation Range／View from Gripper Side

－The figure at the right indicates the position of the gripper when pressure is applied to port B．
－When pressure is applied to port A ，the gripper rotates clockwise．
－Both ends of vibration can be adjusted $\pm 5^{\circ}$ with the adjusting bolt．


Component Parts

| No． | Description | Material | Note |
| :---: | :---: | :---: | :---: |
| （1） | Air gripper | － |  |
| （2） | Rotary actuator | － | Two types for $90^{\circ}$ and $180^{\circ}$ |
| （3） | Body C | Aluminum alloy | Anodized |
| （4） | Stopper lever | Carbon steel | Heat treatment （ $90^{\circ}$ and $180^{\circ}$ ） |
| （5） | Stopper guide | Stainless steel | Nitriding |
| （6） | Lever retainer | Carbon steel | Zinc chromated |
| （7） | Switch guide | Resin |  |
| （8） | Switch holder A | Resin |  |
| （9） | Switch case | Resin |  |
| （10） | Switch holder B | Resin |  |
| （11） | Bearing | High carbon bearing steel |  |
| （12） | O－ring | NBR | Heat treatment，Nickel plated |
| （13） | Adjustment bolt | Carbon steel | Nickel plated |
| （14） | Nut | Carbon steel | Nickel plated |
| （15） | Hexagon socket head cap screw | Carbon steel |  |
| （16） | Parallel pin | Stainless steel |  |
| （17） | Hexagon socket head cap screw | Stainless steel |  |
| （18） | Hexagon socket head cap screw | Stainless steel |  |
| （19） | Magnet lever | Resin |  |
| （20） | Magnet | － | Nickel plated |
| （21） | Hexagon socket head set screw | Stainless steel |  |
| （22） | Resin case | Resin |  |
| 资料详情：WWW．SANPUM．COM S＾NPUM 725 |  |  |  |

## Series MRHQ

Dimensions
MRHQ10



MHZ
MHF


## Series MRHQ

Dimensions





# Auto Switch Specifications 

## Applicable Series



| Series | Application | Auto switch model |  | Electrical entry |
| :---: | :---: | :---: | :---: | :---: |
| MRHQ10 <br> MRHQ16 <br> MRHQ20 <br> MRHQ25 | Gripper opening／ closing verification | Solid state | D－M9BV | Grommet／2－wire |
|  |  |  | D－M9NV，M9PV | Grommet／3－wire |
|  | Rotation verification | Solid state | D－M9B－746 | Grommet／2－wire |
|  |  |  | D－M9N－746，M9P－746 | Grommet／3－wire |

## Auto Switch Hysteresis

Auto switches have hysteresis similar to micro switches．Use the table below as a guide when adjusting auto switch positions，etc．


## Mounting of Auto Switch

| Model | Hysteresis $(\mathrm{mm})$ |
| :---: | :---: |
| MRHQ10 | 0.5 |
| MRHQ16 | 0.5 |
| MRHQ20 | 1.0 |
| MRHQ25 | 1.0 |

## Mounting Auto Switches to Verify Rotation

1．First，remove the slotted set screw installed in a standard switch．


2．Insert the auto switch into the switch case，and install switch holder B into the first groove（MRHQ20／25）or the second groove（MRHQ10／16）and secure the auto switch．


3．Install the auto switch case，with a switch attached securely in the hole，in the direction indicated in Figure（1）．


## Mounting Auto Switches to Verify Opening／Closing of Gripper

1．Position switch holder $A$ in the groove of the switch guide in the direction indicated in Figure（2）．
2．Insert an auto switch into the switch guide and align the set screw with the hole of switch holder A．


Figure（2）
3．Secure the auto switch at an appropriate position with a flat head watchmakers screwdriver as indicated in Figure（3）．

Tightening torque： $\mathbf{0 . 0 5}$ to $0.1 \mathbf{N} \cdot \mathrm{~m}$


Figure（3）

## Auto Switch Specifications

## Grommet

－Reduce the 2－wire load current （ 2.5 to 40 mA ）
－Use a flexible cord as a standard


Auto Switch Internal Circuit


D－M9P－746


D－M9B－746


| PLC：Programmable Logic Controller |  |  |  |
| :---: | :---: | :---: | :---: |
| D－M9 $\square \square-746$（With indicator light） |  |  |  |
| Auto switch part no． | D－M9N－746 | D－M9P－746 | D－M9B－746 |
| Electrical entry | Lateral | Lateral | Lateral |
| Wiring type | 3－wire |  | 2－wire |
| Output type | NPN Type | PNP Type | － |
| Applicable load | IC circuit，Relay，for PLC |  | 24 VDC relay，for PLC |
| Power supply | 5，12， $24 \mathrm{VDC}(4.5$ to 28V） |  |  |
| Current consumption | 10 mA or less |  | － |
| Load voltage | 28 VDC or less | － | $24 \mathrm{VDC}(10$ to 28 VDC$)$ |
| Load current | 40 mA or less |  | 2.5 to 40 mA |
| Internal voltage drop | 0.8 V or less at 10 mA （ 2 V or less at 40 mA ） |  | 4 V or less |
| Leakage current | $100 \mu \mathrm{~A}$ or less at 24 VDC |  | 0.8 mA or less |
| Indicator light | Red LED illuminates when turned ON． |  |  |
| Standard | CE marking |  |  |
| ```QLead wire: Oilproof heavy-duty vinyl cord 2.7 x 3.2 ellipse, 0.15mm2, 2 cores(D-M9B), 3 cores(D-M9N, D-M9P) -Lead length symbols: 0.5m (Example)D-M9N-746 3 m (Example)D-M9NL-746 5 m (Example)D-M9NZ-746``` |  |  |  |
|  |  |  |  |

## Auto Switch Mass

| Auto switch part no． |  | D－M9N－746 | D－M9P－746 | D－M9B－746 |
| :---: | :---: | :---: | :---: | :---: |
| Lead wire length <br> m | 0.5 | 8 | 8 | 7 |
|  | 3 | 41 | 41 | 38 |
|  | 5 | 68 | 68 | 63 |

MHZ
MHF
MHL
MHR
MHK
MHS
MHC
MHT
MHY
MHW
$-\mathrm{X} \square$
MRHO
MA
D－$\square$

## Series MRHQ

## Auto Switch Installation Examples and Mounting Positions

Various auto switch applications will be available with combinations of using different numbers of auto switches and varieties of detecting positions．
1）Detection when Gripping Exterior of Workpiece
 table may be limited，depending on the hysteresis of an auto switch，etc．

Various auto switch applications will be available with combinations of using different numbers of auto switches and varieties of detecting positions．

## 2）Detection when Gripping Interior of Workpiece



Note）－It is recommended that gripping of a workpiece be performed close to the center of the finger stroke．
－When holding a workpiece close at the end of open／close stroke of fingers，detecting performance of the combinations listed in the above table may be limited，depending on the hysteresis of an auto switch，etc．

Series MRHQ Specific Product Precautions 1
Be sure to read before handling．Refer to front matters 38 and 39 for Safety Instructions and pages 358 to 365 for Rotary Actuator，Air Gripper and Auto Switch Precautions．

## Selection

## © Warning

1．Keep the load energy within the product＇s allowable energy value．
Operation with a load kinetic energy exceeding the allowable value can cause human injury and／or damage to equipment or machinery．（Refer to＂Model Section＂procedures in this catalog．）

## $\triangle$ Caution

1．When there are load fluctuations，allow a sufficient margin in the actuator torque．
In the case of horizontal mounting（operation with product facing sideways），malfunction may occur due to load fluctuations．

## Mounting

## $\triangle$ Caution

1．Adjust the rotation angle within the prescribed ranges： $90^{\circ} \pm 10^{\circ} ; 180^{\circ} \pm 10^{\circ}\left( \pm 5^{\circ}\right.$ at end of rotation）．
Adjustment outside the prescribed ranges may cause malfunction of the product or failure of switches to operate．
2．Adjust the opening／closing speed of the fingers with a speed controller so that they do not operate any faster than necessary．
When fingers open and close faster than necessary，impact on the fingers and other parts increases，causing poor repeatability when gripping workpieces and danger of an adverse effect on the product＇s life．

Adjustment of Finger Opening／Closing Speed

| Double <br> acting | Install two speed controllers and adjust <br> with meter－out throttling． |
| :---: | :--- |
|  | Install one speed controller and adjust with <br> meter－in throttling． |
| Single |  |
| acting | For external gripping－connect to closing port <br> For internal gripping－connect to opening port |

3．Adjust the rotation time within the prescribed values using a speed controller．（0．07 to 0.3 $s / 90^{\circ}$ ）
Adjustment to a speed slower than $0.3 \mathrm{~s} / 90^{\circ}$ can cause sticking and slipping or stopping of operation．

## Maintenance

## $\triangle$ Caution

## 1．Gripper unit

Replace a gripper unit．When replacing it follow the gripper unit replacement procedures on the next page．Confirm the correct unit part number．

| Gripper unit | Model | Unit part no． |
| :---: | :---: | :---: |
|  | MRHQ10D | P407090－3D |
|  | MRHQ10S | P407090－3S |
|  | MRHQ10C | P407090－3C |
|  | MRHQ16D | P407060－3D |
|  | MRHQ16S | P407060－3S |
|  | MRHQ16C | P407060－3C |
| $\square$－ | MRHQ20D | P407080－3D |
|  | MRHQ20S | P407080－3S |
|  | MRHQ20C | P407080－3C |
| $\square$ | MRHQ25D | P408080－3D |
|  | MRHQ25S | P408080－3S |
|  | MRHQ25C | P408080－3C |

＊A gripper unit includes not only an air gripper，but also three O－rings（12） and three hexagon socket head cap screws（15）as shown in the construction on page 725 ．

## 2．Rotary unit

Replace a rotary unit．


| Model | Unit part no． |
| :---: | :---: |
| MRHQ10 $\square$－90S | P406090－2A |
| MRHQ10 $\square$－180S | P406090－2B |
| MRHQ16 $\square$－90S | P406060－2A |
| MRHQ16 $\square$－180S | P406060－2B |
| MRHQ20 $\square$－90S | P407080－2A |
| MRHQ20 $\square$－180S | P407080－2B |
| MRHQ25 $\square$－90S | P408080－2A |
| MRHQ25 $\square$－180S | P408080－2B |

＊Note that the rotation angle cannot be changed even though the rotary unit has been changed

For maintenance，order units with a part number suitable for the model being used．

3．O－ring in the body C
（（12）O－ring in the construction on page 725： 3 pcs．）

| Model | Seal kit part no． |
| :---: | :---: |
| MRHQ10 $\square$ | MRHQ10S－PS |
| MRHQ16 $\square$ | MRHQ16S－PS |
| MRHQ20 $\square$ | MRHQ20S－PS |
| MRHQ25 $\square$ | MRHQ25S－PS |
| ＊Special grease is applied． |  |
| ＊This O－ring is included in the gripper unit． |  |

Be sure to read before handling．Refer to front matters 38 and 39 for Safety Instructions and pages 358 to 365 for Rotary Actuator，Air Gripper and Auto Switch Precautions．

## Maintenance

## $\triangle$ Caution

## Gripper Unit Replacement Procedure



# SANPUM 

为高端制造业提供一流的工业产品

## S＾NPUM

深圳市三浦贸易有限公司
地址：深圳市南山区南海大道海王大厦A座19E
电话：86－755－23881000
传真：86－755－23881777
邮箱：info＠sanpum．com


[^0]:    $\int$ Refer to＂Moment of Inertia \｛alculation and Allowable Kinetic $\}$ Energy＂．

[^1]:    －Although conditions differ according to the workpiece shape and the coefficient of friction between the attachments and the workpiece， select a model that can provide a gripping force of 10 to 20 times the workpiece mass，or more．
    －A greater margin of safety is required when high acceleration or impact occurs during workpiece transfer．

